Domov / FAQ

FAQ

povzeli smo nekaj pogostih težav

proizvodnja

  • Q.

    Ali izdelujete izdelke po meri?

    A.

    da. Strankam nudimo rešitve OEM/ODM. Najmanjša količina naročila OEM je 10,000 kosov.

  • Q.

    Kako pakirate izdelke?

    A.

    Pakiramo po predpisih Združenih narodov, lahko pa zagotovimo tudi posebno embalažo glede na zahteve kupcev.

  • Q.

    Kakšno potrdilo imate?

    A.

    Imamo ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Ali ponujate brezplačne vzorce?

    A.

    Baterije z močjo, ki ne presega 10 WH, nudimo kot brezplačne vzorce.

  • Q.

    Kakšne so vaše proizvodne zmogljivosti?

    A.

    120,000-150,000 kosov na dan, vsak izdelek ima drugačno proizvodno zmogljivost, o podrobnih informacijah lahko razpravljate po e-pošti.

  • Q.

    Koliko časa traja proizvodnja?

    A.

    Približno 35 dni. Določen čas je mogoče uskladiti po elektronski pošti.

  • Q.

    Kako dolg je čas izdelave vašega vzorca?

    A.

    Dva tedna (14 dni).

Ostalo

  • Q.

    Kakšni so plačilni pogoji?

    A.

    Običajno sprejemamo 30% predplačilo kot polog in 70% pred dostavo kot končno plačilo. O drugih metodah se je mogoče pogajati.

  • Q.

    Kakšni so pogoji dostave?

    A.

    Nudimo: FOB in CIF.

  • Q.

    Kakšen je način plačila?

    A.

    Sprejemamo plačilo preko TT.

  • Q.

    Na katerih trgih ste prodajali?

    A.

    Blago smo prevažali v Severno Evropo, Zahodno Evropo, Severno Ameriko, Bližnji vzhod, Azijo, Afriko in druge kraje.

Tehnologija

  • Q.

    Kaj je baterija?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Kakšne so razlike med primarnimi in sekundarnimi baterijami?

    A.

    Glavna razlika je v tem, da je aktivna snov drugačna. Aktivni material sekundarne baterije je reverzibilen, aktivni material primarne baterije pa ne. Samopraznjenje primarne baterije je veliko manjše od praznjenja sekundarne baterije. Kljub temu je notranji upor veliko večji kot pri sekundarni bateriji, zato je nosilnost manjša. Poleg tega sta masno specifična zmogljivost in prostorninska zmogljivost primarne baterije pomembnejši kot pri razpoložljivih baterijah za ponovno polnjenje.

  • Q.

    Kakšen je elektrokemijski princip Ni-MH baterij?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Kakšen je elektrokemijski princip litij-ionskih baterij?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Kateri so običajno uporabljeni standardi za baterije?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Kakšna je glavna struktura Ni-MH baterije?

    A.

    Glavne sestavine nikelj-metal hidridnih baterij so pozitivna elektrodna plošča (nikljev oksid), plošča negativne elektrode (zlitina za shranjevanje vodika), elektrolit (večinoma KOH), membranski papir, tesnilni obroč, pokrovček pozitivne elektrode, ohišje baterije itd.

  • Q.

    Katere so glavne strukturne komponente litij-ionskih baterij?

    A.

    Glavne komponente litij-ionskih baterij so zgornji in spodnji pokrov baterije, pozitivna elektrodna plošča (aktivni material je litijev kobaltov oksid), separator (posebna kompozitna membrana), negativna elektroda (aktivni material je ogljik), organski elektrolit, ohišje baterije (razdeljeno na dve vrsti jeklene in aluminijaste lupine) in tako naprej.

  • Q.

    Kakšen je notranji upor baterije?

    A.

    Nanaša se na upor, ki ga doživlja tok, ki teče skozi baterijo, ko baterija deluje. Sestavljen je iz ohmskega notranjega upora in polarizacijskega notranjega upora. Pomemben notranji upor baterije bo zmanjšal delovno napetost praznjenja baterije in skrajšal čas praznjenja. Na notranjo odpornost v glavnem vplivajo material baterije, proizvodni proces, struktura baterije in drugi dejavniki. Je pomemben parameter za merjenje zmogljivosti baterije. Opomba: Na splošno je notranji upor v napolnjenem stanju standard. Za izračun notranjega upora baterije bi moral namesto multimetra v območju ohmov uporabiti poseben merilnik notranjega upora.

  • Q.

    Kakšna je nazivna napetost?

    A.

    Nazivna napetost baterije se nanaša na napetost, ki se kaže med rednim delovanjem. Nazivna napetost sekundarne nikelj-kadmijeve nikelj-vodikove baterije je 1.2 V; nazivna napetost sekundarne litijeve baterije je 3.6V.

  • Q.

    Kaj je napetost odprtega tokokroga?

    A.

    Napetost odprtega tokokroga se nanaša na potencialno razliko med pozitivno in negativno elektrodo baterije, ko baterija ne deluje, to je, ko skozi vezje ne teče tok. Delovna napetost, znana tudi kot terminalna napetost, se nanaša na potencialno razliko med pozitivnim in negativnim polom baterije, ko baterija deluje, to je, ko je v tokokrogu prekomerni tok.

  • Q.

    Kakšna je zmogljivost baterije?

    A.

    Zmogljivost baterije je razdeljena na nazivno moč in dejansko zmogljivost. Nazivna zmogljivost baterije se nanaša na določilo ali jamstvo, da mora baterija med načrtovanjem in izdelavo nevihte izprazniti najmanjšo količino električne energije pod določenimi pogoji praznjenja. Standard IEC določa, da se nikelj-kadmijeve in nikelj-metal-hidridne baterije polnijo pri 0.1C 16 ur in praznijo pri 0.2C do 1.0V pri temperaturi 20°C±5°C. Nazivna zmogljivost baterije je izražena kot C5. Litij-ionske baterije se morajo polniti 3 ure pri povprečni temperaturi, stalni tok (1C)-konstantna napetost (4.2V) nadzoruje zahtevne pogoje in nato praznjenje pri 0.2C do 2.75V, ko je izpraznjena električna energija nazivna zmogljivost. Dejanska zmogljivost baterije se nanaša na dejansko moč, ki jo sprosti nevihta v določenih pogojih praznjenja, na katero v glavnem vplivata hitrost praznjenja in temperatura (tako strogo gledano bi morala zmogljivost baterije določati pogoje polnjenja in praznjenja). Enota kapacitete baterije je Ah, mAh (1Ah=1000mAh).

  • Q.

    Kakšna je preostala izpraznjenost baterije?

    A.

    Ko se baterija za ponovno polnjenje izprazni z velikim tokom (kot je 1C ali več), je zaradi "učinka ozkih grl", ki obstaja v notranji stopnji difuzije tokovnega pretoka, baterija dosegla terminalno napetost, ko zmogljivost ni popolnoma izpraznjena , nato pa uporabi majhen tok, kot je 0.2C, lahko nadaljuje z odstranjevanjem, dokler 1.0V/kos (nikelj-kadmijeva in nikelj-vodikova baterija) in 3.0V/kos (litijeva baterija), se sprosti zmogljivost imenuje preostala zmogljivost.

  • Q.

    Kaj je izpustna ploščad?

    A.

    Platforma za praznjenje Ni-MH baterij za ponovno polnjenje se običajno nanaša na napetostno območje, v katerem je delovna napetost baterije sorazmerno stabilna, ko se izprazni pod določenim sistemom praznjenja. Njegova vrednost je povezana z izpustnim tokom. Večji kot je tok, manjša je teža. Platforma za praznjenje litij-ionskih baterij običajno preneha s polnjenjem, ko je napetost 4.2 V, prisotna pa je manjša od 0.01 C pri konstantni napetosti, nato jo pustite 10 minut in se izprazni na 3.6 V pri kateri koli hitrosti praznjenja. tok. To je nujen standard za merjenje kakovosti baterij.

  • Q.

    Kakšna je metoda označevanja baterij za ponovno polnjenje, ki jo določa IEC?

    A.

    Po standardu IEC je oznaka Ni-MH baterije sestavljena iz 5 delov. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Na primer, HF18/07/49 predstavlja kvadratno nikelj-kovinsko hidridno baterijo s širino 18 mm, 7 mm in višino 49 mm. KRMT33/62HH predstavlja nikelj-kadmijevo baterijo; stopnja praznjenja je med 0.5C-3.5, visokotemperaturna serija enojnih baterij (brez priključnega kosa), premer 33 mm, višina 62 mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Prva črka: označuje škodljiv material elektrod baterije. I—predstavlja litij-ionsko z vgrajeno baterijo; L—predstavlja litijevo kovinsko elektrodo ali elektrodo iz litijeve zlitine. 03) Druga črka: označuje katodni material baterije. C—elektroda na osnovi kobalta; N—elektroda na osnovi niklja; M—elektroda na osnovi mangana; V—elektroda na osnovi vanadija. 04) Tretja črka: označuje obliko baterije. R-predstavlja cilindrično baterijo; L-predstavlja kvadratno baterijo. 05) Številke: Cilindrična baterija: 5 številk označuje premer in višino nevihte. Enota za premer je milimeter, velikost pa desetinka milimetra. Če je kateri koli premer ali višina večja ali enaka 100 mm, je treba dodati diagonalno črto med obe velikosti. Kvadratna baterija: 6 številk označuje debelino, širino in višino nevihte v milimetrih. Če je katera koli od treh dimenzij večja ali enaka 100 mm, mora med dimenzijami dodati poševnico; če je katera od treh dimenzij manjša od 1 mm, se pred to dimenzijo doda črka »t«, enota te mere pa je ena desetinka milimetra. Na primer, ICR18650 predstavlja cilindrično sekundarno litij-ionsko baterijo; katodni material je kobalt, njegov premer je približno 18 mm, njegova višina pa približno 65 mm. ICR20/1050. ICP083448 predstavlja kvadratno sekundarno litij-ionsko baterijo; katodni material je kobalt, njegova debelina je približno 8 mm, širina je približno 34 mm, višina pa približno 48 mm. ICP08/34/150 predstavlja kvadratno sekundarno litij-ionsko baterijo; katodni material je kobalt, njegova debelina je približno 8 mm, širina je približno 34 mm, višina pa približno 150 mm.

  • Q.

    Kakšni so embalažni materiali baterije?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Kakšen je namen pakiranja, sestavljanja in oblikovanja baterije?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Kateri so glavni vidiki delovanja sekundarne baterije na splošno?

    A.

    Vključuje predvsem napetost, notranjo upornost, zmogljivost, gostoto energije, notranji tlak, hitrost samopraznjenja, življenjsko dobo, tesnjenje, varnostno zmogljivost, zmogljivost shranjevanja, videz itd. Obstajajo tudi prenapolnjenost, prekomerno praznjenje in odpornost proti koroziji.

  • Q.

    Kateri so predmeti preizkusa zanesljivosti baterije?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Kateri so elementi preskusa varnosti baterije?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Kakšni so standardni načini polnjenja?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Kakšno je standardno polnjenje in praznjenje Ni-MH baterij?

    A.

    Mednarodni standard IEC določa, da je standardno polnjenje in praznjenje nikelj-metal hidridnih baterij: najprej izpraznite baterijo pri 0.2C do 1.0V/kos, nato napolnite pri 0.1C 16 ur, pustite jo 1 uro in jo postavite pri 0.2C do 1.0V/kos, to je za polnjenje in praznjenje standardne baterije.

  • Q.

    Kaj je impulzno polnjenje? Kakšen je vpliv na delovanje baterije?

    A.

    Impulzno polnjenje običajno uporablja polnjenje in praznjenje, nastavitev za 5 sekund in nato sprostitev za 1 sekundo. Večino kisika, ki nastane med postopkom polnjenja, bo zmanjšal v elektrolite pod impulzom praznjenja. Ne samo, da omejuje količino notranjega izhlapevanja elektrolita, temveč se bodo stare baterije, ki so bile močno polarizirane, po 5-10-kratnem polnjenju in praznjenju s tem načinom polnjenja postopoma obnovile ali približale prvotni zmogljivosti.

  • Q.

    Kaj je postopno polnjenje?

    A.

    Postopno polnjenje se uporablja za nadomestitev izgube zmogljivosti, ki jo povzroči samopraznjenje baterije, potem ko je popolnoma napolnjena. Na splošno se za doseganje zgornjega namena uporablja polnjenje z impulznim tokom.

  • Q.

    Kaj je učinkovitost polnjenja?

    A.

    Učinkovitost polnjenja se nanaša na stopnjo, do katere se električna energija, ki jo porabi baterija med postopkom polnjenja, pretvori v kemično energijo, ki jo baterija lahko shrani. Nanj vplivata predvsem tehnologija baterije in temperatura delovnega okolja nevihte – na splošno je višja kot je temperatura okolja, nižja je učinkovitost polnjenja.

  • Q.

    Kaj je učinkovitost praznjenja?

    A.

    Učinkovitost praznjenja se nanaša na dejansko moč, izpraznjeno na priključno napetost pod določenimi pogoji praznjenja do nazivne zmogljivosti. Nanj vplivajo predvsem hitrost praznjenja, temperatura okolice, notranji upor in drugi dejavniki. Na splošno velja, da višja kot je stopnja praznjenja, višja je stopnja praznjenja. Nižja je učinkovitost praznjenja. Nižja kot je temperatura, manjša je učinkovitost praznjenja.

  • Q.

    Kakšna je izhodna moč baterije?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Kaj je samopraznjenje sekundarne baterije? Kakšna je stopnja samopraznjenja različnih vrst baterij?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Kaj je 24-urni test samopraznjenja?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Kakšna je razlika med notranjim uporom napolnjenega stanja in notranjim uporom izpraznjenega stanja?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Kaj je statična odpornost? Kaj je dinamični upor?

    A.

    Statični notranji upor je notranji upor baterije med praznjenjem, dinamični notranji upor pa notranji upor baterije med polnjenjem.

  • Q.

    Ali je standardni test odpornosti na prenapolnjenost?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Kaj je standardni preskus življenjskega cikla IEC?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Kakšen je notranji tlak baterije?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Kaj je standardni test zadrževanja naboja?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Kaj je preskus kratkega stika?

    A.

    Uporabite žico z notranjim uporom ≤100mΩ, da povežete pozitiven in negativni pol popolnoma napolnjene baterije v škatli, varni proti eksploziji, da povzročite kratek stik pozitivnih in negativnih polov. Baterija ne sme eksplodirati ali se vneti.

  • Q.

    Kakšni so testi visoke temperature in visoke vlažnosti?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Kaj je poskus dviga temperature?

    A.

    Ko je baterija popolnoma napolnjena, jo dajte v pečico in segrevajte na sobno temperaturo s hitrostjo 5°C/min. Ko je baterija popolnoma napolnjena, jo postavite v pečico in segrevajte na sobno temperaturo s hitrostjo 5°C/min. Ko temperatura pečice doseže 130°C, jo pustimo 30 minut. Baterija ne sme eksplodirati ali se vneti. Ko temperatura pečice doseže 130°C, jo pustimo 30 minut. Baterija ne sme eksplodirati ali se vneti.

  • Q.

    Kaj je eksperiment temperaturnega cikla?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Kaj je test padca?

    A.

    Ko je baterija ali baterijski paket popolnoma napolnjen, ga trikrat spustimo z višine 1 m na betonsko (ali cementno) zemljo, da dobimo udarce v naključnih smereh.

  • Q.

    Kaj je vibracijski poskus?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Kaj je preskus udarca?

    A.

    Ko je baterija popolnoma napolnjena, postavite trdo palico vodoravno in spustite 20-kilogramski predmet z določene višine na trdo palico. Baterija ne sme eksplodirati ali se vneti.

  • Q.

    Kaj je poskus penetracije?

    A.

    Ko je baterija popolnoma napolnjena, skozi središče nevihte vtaknite žebelj določenega premera in pustite zatič v bateriji. Baterija ne sme eksplodirati ali se vneti.

  • Q.

    Kaj je požarni poskus?

    A.

    Popolnoma napolnjeno baterijo postavite na grelno napravo z edinstvenim zaščitnim pokrovom proti ognju, tako da skozi zaščitni pokrov ne bo šlo nobenih odpadkov.

  • Q.

    Katere certifikate so opravili izdelki podjetja?

    A.

    Prestal je certificiranje sistema kakovosti ISO9001:2000 in certificiranje sistema varstva okolja ISO14001:2004; izdelek je pridobil certifikat EU CE in certifikat UL Severne Amerike, opravil test varstva okolja SGS in je pridobil patentno licenco Ovonic; hkrati je PICC odobril izdelke podjetja v svetovnem obsegu zavarovanja.

  • Q.

    Kaj je baterija, pripravljena za uporabo?

    A.

    Baterija, pripravljena za uporabo, je nova vrsta Ni-MH baterije z visoko stopnjo zadrževanja napolnjenosti, ki jo je predstavilo podjetje. Je baterija, odporna na shranjevanje, z dvojno zmogljivostjo primarne in sekundarne baterije in lahko nadomesti primarno baterijo. To pomeni, da je baterija mogoče reciklirati in ima višjo preostalo moč po skladiščenju za enak čas kot običajne sekundarne Ni-MH baterije.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Kakšni so previdnostni ukrepi pri uporabi baterije?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Kakšna je razlika med različnimi standardnimi polnilnimi baterijami?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Kakšna je stopnja praznjenja baterije? Kakšna je urna postavka sproščanja nevihte?

    A.

    Hitrost praznjenja se nanaša na razmerje med izpustnim tokom (A) in nazivno zmogljivostjo (A•h) med zgorevanjem. Urno praznjenje se nanaša na ure, potrebne za praznjenje nazivne zmogljivosti pri določenem izhodnem toku.

  • Q.

    Zakaj mora biti baterija pri snemanju pozimi topla?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Kakšno je temperaturno območje delovanja litij-ionskih baterij?

    A.

    Polnjenje -10—45℃ Izpust -30—55℃

  • Q.

    Ali je mogoče kombinirati baterije različnih kapacitet?

    A.

    Če mešate nove in stare baterije različnih zmogljivosti ali jih uporabljate skupaj, lahko pride do puščanja, ničelne napetosti itd. To je posledica razlike v moči med postopkom polnjenja, zaradi česar se nekatere baterije med polnjenjem preveč napolnijo. Nekatere baterije niso popolnoma napolnjene in imajo kapaciteto med praznjenjem. Visoka baterija ni popolnoma izpraznjena, baterija z nizko zmogljivostjo pa je preveč izpraznjena. V takem začaranem krogu je baterija poškodovana, pušča ali ima nizko (nič) napetost.

  • Q.

    Kaj je zunanji kratek stik in kakšen vpliv ima na delovanje baterije?

    A.

    Priključitev zunanjih dveh koncev baterije na kateri koli vodnik bo povzročila zunanji kratek stik. Kratek potek lahko povzroči hude posledice za različne tipe baterij, kot so dvig temperature elektrolita, zvišanje notranjega zračnega tlaka itd. Če zračni tlak preseže vzdržno napetost pokrovčka akumulatorja, bo baterija puščala. Ta situacija močno poškoduje baterijo. Če varnostni ventil odpove, lahko povzroči celo eksplozijo. Zato ne povzročajte kratkega stika baterije na zunanji strani.

  • Q.

    Kateri so glavni dejavniki, ki vplivajo na življenjsko dobo baterije?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Ali je mogoče baterijo shraniti v aparatu, ko se izprazni ali če ga ne uporabljate dlje časa?

    A.

    Če električnega aparata dalj časa ne bo uporabljal, je najbolje, da odstranite baterijo in jo postavite v suh prostor z nizko temperaturo. V nasprotnem primeru, tudi če je električni aparat izklopljen, bo sistem še vedno povzročil nizek tok baterije, kar bo skrajšalo življenjsko dobo nevihte.

  • Q.

    Kakšni so boljši pogoji za shranjevanje baterije? Ali moram popolnoma napolniti baterijo za dolgotrajno shranjevanje?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Kaj je standardna baterija?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Kakšni so možni razlogi za ničelno napetost ali nizko napetost ene baterije?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Kateri so možni razlogi za ničelno napetost ali nizko napetost baterije?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Kakšne so metode nadzora za preprečevanje prenapolnjenosti baterije?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Kakšni so možni razlogi, zakaj baterije ali paketa baterij ni mogoče napolniti?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Niste našli, kar ste želeli?Pomoč strankam

close_white
Zapri

Tukaj napišite povpraševanje

odgovorite v 6 urah, vsa vprašanja so dobrodošla!